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ABSTRACT  
 
This report presents a multivariable controller design for a generic missile travelling at 
hypersonic speed. The controller is based on the theory of optimal control, and the solution is 
provided by a feedback controller known as a Linear Quadratic Regulator (LQR) for tracking the 
demands (lateral acceleration and roll rate) as closely as possible while keeping the actuator 
efforts (for deflecting aileron, elevator and rudder) small. In the computer simulation, the missile 
model is subject to various hypersonic flight conditions and gain scheduling is exercised as a 
function of dynamic pressure. The intial study assumes perfect knowledge of all the states for the 
controller design. Subsequently, a state observer (kalman filter) is introduced into the design to 
reflect a more practical synthesis where some of the states need to be estimated. 
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Design of Optimal Flight Controller for Generic 
Linearised Missile Model in Hypersonic Regime   

 
 

Executive Summary  
 
 
The design of a missile autopilot controller that provides a fast and stable response to 
guidance commands and also maintains the performance throughout the entire flight 
envelope, poses a challenge to the flight control engineer. This report considers the 
autopilot design for a generic cruciform missile utilising the generic 6DoF airframe model 
developed in-house [Faruqi 2007] and the linear quadratic regulator (LQR) technique. 
 
The control designs are presented for tracking the desired lateral accelerations and roll 
rate, where the control inputs are aileron, elevator and rudder deflections. The optimal 
LQR design aims to find the feedback gain that minimises a particular cost function. In 
this case it is the weighted sum of energies associated with tracking error and control 
signal. Note that these two cost terms are conflicting (i.e., faster tracking leads to increased 
strain on the actuator) and the role of the control gain is simply a trade-off between the 
response time and control effort. 
 
We subject the vehicle to two hypersonic flight conditions and show that a gain scheduling 
may be performed using the dynamic pressure as the sole scheduling input. The controller 
design extends to output feedback control where a state observer is included in the 
feedback loop. 
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1. Introduction  

The design of a missile autopilot controller which provides a fast and stable response to 
guidance commands, and which maintains the performance throughout the entire flight 
envelope, poses a challenge to the flight control engineer. This report considers the autopilot 
design for a generic cruciform missile utilising the generic 6DoF airframe model developed 
in-house [Faruqi 2007] and the linear quadratic regulator (LQR) technique. 
 
Classical control techniques usually involve loop shaping approaches - frequency domain 
techniques such as bode and Nyquist plots. Single-Input Single-Output (SISO) systems are 
the primary focus of classical controls. Multiple-Input Multiple-Output (MIMO) systems can 
be controlled through classical control techniques, but to do so usually requires that each 
input and output can be decoupled. In this case the system can be treated as a bunch of SISO 
systems and each controller can be designed without consideration of the others. 
 
Controllers are filters that shape the feedback error to achieve the desired system response. 
The input to a controller is the error between the desired and measured system outputs. The 
controller's output is a filtered version of that error. Controller design is a matter of selecting 
poles, zeros, and gains. Poles provide integral action which is slow responding to errors but 
drives the step response to a zero steady-state error. Zeros are responsible for derivative 
action which is fast but can amplify noise and leads to a non-zero steady-state error. Gains 
provide instantaneous response to errors. 
 
When applied to the flight control, the classical approach leads to a three-loop autopilot 
[Nesline and Nabbefeld 1984], where longitudinal, lateral and roll dynamics are considered 
independently as mentioned above. This approach is valid for a limited range of flight 
conditions. Furthermore, loop shaping can be very difficult for MIMO systems. 
 
The state-based modern control design allows for a more convenient and compact way to 
model and analyse MIMO systems, where the inter-axial coupling effects are included. This 
approach can be applied to more extreme flight regimes, non-symmetrical airframes with 
non-symmetrical mass distribution, and adaptive control. 
 
The optimal LQR design aims to minimise or maximise a particular cost function. In our case 
it is the minimisation of the combined energy of tracking error (response speed) and control 
signal. Note that these two cost terms are conflicting (i.e. decreasing one increases the other) 
and the role of control gain is simply the trade-off between the response time and control 
effort. 
 
We initially assume that all 24 states are precisely known, and design a full state feedback 
controller. We then present the stability issue, steady state gain, effect of poles and zeros on 
step response, and gain scheduling for the two flight envelopes associated with the hypersonic 
air-to-ground attack scenarios. We then move on to the observed feedback control design, 
where only 6 inertial measurement unit (IMU) output variables are available, and a Kalman 
filter is used to estimate the 24 state variables from the 6 measurement variables. Replacing the 
true state variables with the estimates, we repeat some of the previous computer simulations 
and investigate the effect of the state observer on the closed loop response. 
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2. State Feedback Control System 

In this section, we present the closed-loop optimal control of linear systems with quadratic 
performance index. This leads to the linear quadratic regulator (LQR) system dealing with 
state regulation (keeping the state around zero). If the requirement is altered to make the 
state follow or track a desired trajectory, then the problem becomes that of linear quadratic 
tracking (LQT) or alternatively the servomechanism problem.  
 
2.1 Formulation 

The linearised dynamical system is governed by the following differential equations 
 

)()()()()()( tttttt wuGxFx   (1) 
 
and the measurement equations are given as 
 

)()()()( tttt vxJz  . (2) 
 
where 
 is a system state vector, x 124
 is a (servo) input vector , u 13 T],,[ 

 is a measurement (accelerations and body rates)vector , z 16 T
zyx rqpaaa ],,,,,[

 is a process noise vector, w 124
 is a  measurement noise vector, v 16
 is a system coefficient matrix, F 2424
 is a control coefficient matrix, G 324
  is a  measurement coefficient matrix. J 246
 
The state vector contains 24 states: x

),,,,,,,,,,,,,,,,,,,,,,,( oooooooooooozzyyxx rrqqppaaaaaarqpwvu  

2
_ ms1 demandya

where the first six 

elements are 3 velocity components and 3 angular rate components, the next 12 elements are 
the accelerometer and gyroscope outputs and their rates, and the remaining 6 elements are 
the control surface deflections and their rates). The derivation and detailed descriptions of 
the above state space model are given in [Faruqi 2007]. Figure 1 shows the step responses of 
the 24 states when . 
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Figure 1: Step response of 24 states 

 
Our objective is to control the system in such a way that the output  tracks the desired 

output as closely as possible during the interval such that the cost function 

shown below is minimised. Let us define the error vector as 

)(tz

()t z

)(tη ],[ 0 ftt

)(te )( tη  , and choose the 
performance index as 
 

dttttttttttC T
t

t

T
fff

T f

)]()()()()()([
2

1
)()()(

2

1

0

uRueQeeSe    (3) 

where 
  is a symmetric positive semi-definite weighting matrix , S 66
  is a symmetric positive semi-definite weighting matrix, Q 66
 R  is a  symmetric positive definite input weighting  matrix. 33
 
From now on, we omit t for brevity except for the initial and final time. 
 
Taking the variational approach as in [Sage 1969; Naidu 2002], the solution to the optimal 
feedback control problem is given as: 
 

ξGRxPGRu ][][ 11 TT    (4) 
 

 
3 



 
DSTO-TR-2423 

where 
 

QJJPGPGRPFPFP TTT  1  (Differential Riccati Equation) (5) 

)()()()( fff
T

f tttt JSJP   and (6) 

 
QηJξPGGRFξ TTT   ][ 1  (7) 

)()()()( fff
T

f tttt ηSJξ   (8) 

 
Given the final conditions (6) and (8), the differential equations (5) and (7) can be solved by 
integrating backwards in time (from to ). Note that the Riccati equation (5) can also be 

solved analytically [Anderson and Moore 1989; Naidu 2002]. 
ft 0t

 
By setting , the problem becomes the infinite time (steady-state) case, and the 

performance index simplifies to 

ft

 

dtttttttC T

t

T )]()()()()()([
2

1

0

uRueQe  


 (9) 

 
The steady state  is obtained by solving the Continuous Algebraic Riccati Equation (CARE)  P
 

QJJPGPGRPFPF0 TTT  1  (10) 
 
And the steady state  is solved by setting  and is given by ξ 0ξ 

 
QηJPGGRFξ TTT 11 ])[(   (11) 

 
We can use the analytic solution [Anderson and Moore 1989; Naidu 2002] or a matlab 
toolbox function “care” as shown below. 
 

),,,( RQJJGFP Tcare  
 
Having found the stabilising solutions  and , the optimal feedback gain is given as P ξ cK

 
PGRK T

c
1  (12) 

 
Adding the input gain term, the solution to the control input is written as 
 

ξKxKu 1 c  (13) 
 

where  (input gain matrix) (14) TGRK 1
1
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We express as (refer to ξ Figure 2), 
 

BηAξ 1  (15) 
 
where 
 

T
c

TT )()( 1 GKFPGGRFA    (16) 

QJB T  (17) 
 
Note that for the linear quadratic regulator (LQR) problem, the input gain term (11) is 
omitted and J term in (10) also disappears. The transient behaviour and stability of the 
demand tracking problem is the same as the regulator problem, therefore the stability 
analysis is performed in LQR context.  
 
2.2 Stability of LQR system 

Ignoring the input term, the closed loop differential equation becomes, 
 

xGKFx )()( ct   (18) 
 
In order for to be a stable matrix, the second method of Lyapunov [Ogata 1995] 
states that there must exist a positive definite matrix  that satisfies the following equation 

cGKF 
P

 
0XGKFPPGKF  )]()[( c

T
c  (19) 

 
where is some positive definite symmetric matrix. X
 
We know Q is positive semi-definite and R is positive definite, and they are both diagonal, 

hence we may say is positive definite. We introduce a matrix and set it as c
T
c RKKQ  X

 

c
T
c RKKQX   (20) 

 
Substituting into (19), we get c

T
c RKKQX 

 
0RKKQGKFPPGKF  )()()( c

T
cc

T
c . (21) 

 
Expanding the above equation leads to 
 

0RKKQPGKPGKPFPF  c
T
cc

TT
c

T . (22) 
 
The optimal feedback gain according to the LQR design is  as in (12). 

Substituting  for in (22) leads to the following stability condition  

PGRK T
c

1

PGR T1
cK

 
0QPGPGRPFPF   TT 1 , (23) 
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This is the algebraic Riccati equation in the LQR problem that was used earlier to compute 
 which was utilised to generate  and u . Since the necessary stability condition (i.e., the 

second method of Lyapunov [Ogata 1995]) leads to the Riccati equation, we may say that the 
proposed closed-loop system is asymptotically stable.  

P cK

 

 
Figure 2: LQT design with Gaussian error terms and state estimator (output feedback) 

 

 
Figure 3: Error free LQT design with full state feedback 

 
The proposed linear quadratic tracker (LQT) design with the feedback and input gains 

and , and state observer is shown in cK 1K Figure 2. However, the majority of the 

simulations in this report are based on the full-state feedback scheme as in Figure 3. 
 
2.3 Steady State Gain 

Substituting the optimal input and feedback gain terms into (1), we get the following closed-
loop differential equation 
 

Q]ηJ)F)((GK[GK]xGK[Fx TT 1
c1c

 . (24) 
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At steady state, , and the analytical solution  for steady state  is given as 0x  x
 

QηJF)(GKGKF][GKx TT 1
c1

1
c ][   . (25) 

 
By setting , we get  (see (14)), and Equation (25) becomes 33 IR TGK 1

 
QηJF)(GKGGF][GKx TTT 1

c
1

c ][    (26) 
 
The measurement equation is 
 

Jxz   
    QηJF)(GKGGFGKJ TTT 1

c
1

c )()(  

    QηGFGKJGFGKJ T])(][)([ 1
c

1
c

 
    (27) ηTss

 
The steady state gain matrix QGFGKJGFGKJT T])(][)([ 1

c
1

css
   is symmetric and 

maps the desired output (or demand)  to the actual output in steady state. η z
 
Typically  appears as below ssT

 





























000000

000000

001000

000100

000010

000000

ssT . 

 
The non-zero diagonal elements of  represent steady state gains, , 

and  in descending order. The remaining terms are either zeros or 

close to zero. The non-zero diagonal elements approximate to 1 only if Q is large. It was 
observed that as Q gets smaller, the diagonal terms get smaller as well. In order to explain 
this observation, we present a simple scalar differential equation. 

ssT y_demandy / aa

z_demand/ aaz demando / pp

 
ufxx   (28) 

xz   (29) 
 
Since , the gains become 1 rg pK c and 11 K , then the scalar version of (25) becomes 
 

fp

q
xpfx





)(  (30) 
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At steady state (ie., 0x ),  
 

2)( fp

q
x





 (31) 

 
where q is a scalar weighting coefficient. 
 
Then the measurement output becomes 
 

2)( fp

q
xz





. (32) 

 
Expanding the denominator, the gain can be shown as 
 

22 2 fpfp

qz





. (33) 

 
Now solving the scalar Riccati equation, , we obtain the optimal q as 

, therefore the above gain can be expressed as 

02 2  qppf

pfpq 22 
 

2fq

qz





. (34) 

 

It is clear that as , the gain 2fq  1

z

, and as , 2fq  0
2


f

qz


. So one may say in 

general that low RQ /

4(ssT

ratio leads to the steady output gain that is smaller than one. To 
ensure the unity static gain, the demand needs to be scaled before entering the system. The 
lateral acceleration and roll rate demands, ,  and , need to be divided by 

  and , respectively before entering the system. 
)2(η )3(η )4(η

)2,2(ssT )3,3(ssT )4,

 
In the following examples, we look at some of the selected runs with different dynamic 
pressure values, and examine their responses. 
 
2.4 Step Responses at Different Operating Points 

The simulations presented here are based on two flight scenarios – high and medium height 
launch modes. Given the altitude and Mach number, dynamic pressure q is computed as 
 

2

2

1
Vq   (35) 

 
where  and V are air density and speed. The dynamic pressure values are computed at 
various operating points along the flight envelopes, and are listed in Table 1 and Table 2.  
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Table 1: High Launch Flight Envelope 

Altitude (m) Mach No Velocity (m/s) Dynamic Pressure 
30000 0.8 241 521 
30000 2 604 3256 
30000 4 1207 13026 
30000 6 1811 29308 
27500 8 2401 76102 
25000 8.2 2448 117281 
22500 8.4 2493 181313 
20000 8.6 2538 283452 
17500 8.8 2597 440208 
15000 9 2656 682947 
12500 9.2 2715 1058492 
10000 9.4 2815 1637048 
7500 9.6 2978 2470386 
5000 9.8 3142 3635414 

2500 10 3306 5232914 

0 10.2 3451 7386198 

 
Table 2: Medium Launch Flight Envelope 

Altitude (m) Mach No Velocity (m/s) Dynamic Pressure 
15000 0.8 236 5396 
20000 2 590 15330 
25000 4 1194 27908 
30000 6 1810 29308 
30000 8 2415 52103 
30000 10 3018 81411 

27500 10 3002 118910 
25000 10 2985 174422 
22500 10 2968 256962 
20000 10 2951 383250 
17500 10 2951 568450 
15000 10 2951 843144 
12500 10 2951 1250581 
10000 10 2995 1852703 
7500 10 3102 2680540 
5000 10 3206 3785313 
2500 10 3306 5232914 

0 10 3403 7099383 

 
The open- and closed-loop responses at the selected operating points are simulated and the 
corresponding responses are examined. Firstly we present a quick look comparison between 
the open loop and closed loop responses, for a selected case where the altitude is 30 km and 
the Mach number is 2.  
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Figure 4: Open and closed loop responses. Open loop response is shown in blue 

 
In Figure 4, the open loop response (blue) is a lightly damped oscillation, with a frequency of 
2.29 rads-1. This corresponds to the third dominant mode shown below. All of the poles have 
negative real parts, indicating that the system is open-loop stable. 
 

 

 Eigenvalue Damping Freq. (rad/s) 
 
 -3.65e-005 1.00e+000 3.65e-005 
 -6.26e-001 1.00e+000 6.26e-001 
 -7.90e-002   2.29e+000i 3.45e-002 2.29e+000 
         :        :                        : 

 
Regarding the closed loop responses, all of them converge correctly to the demand. Note 
that the increase in Q results in a faster response. From (3), it is apparent that a higher Q 
setting puts more weight on reducing the sum of square of the gaps between  and z curves 
in 

η

Figure 5, hence resulting in a faster response. 
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Figure 5: Larger Q means more weight on reducing the integral squares of the difference between  

and z curves. The shaded area shrinks as Q becomes larger.  
η

 
We now look at four examples of “high altitude low speed”, “high altitude high speed”, 
“medium altitude high speed”, “low altitude high speed” cases.  
 
Firstly for the high-altitude low-speed case, the step response is sluggish as shown in Figure 
6, due to low dynamic pressure. It takes more than 3 seconds for the response to settle. 
Selecting high Q tends to speed up the convergence at the expense of slightly higher 
overshoot. The largest overshoot is about 8 percent. Note that it is important to make sure 
that the servo input values are feasible.  
 
According to Bryson’s rule [Franklin et. al. 2002], the first choice for the weighting matrices 
Q and R is to select diagonal Q and R with  
 

))( of  valueacceptiblemaximum/(1),( iii eQ   where  61i , and 
))( of  valueacceptiblemaximum/(1),( jjj uR  where  3,2,1j . 

 
Bryson’s rule is often just the starting point to an iterative trial and error design procedure 
until the desired closed loop performance is achieved. In this report, we set IR   and only 
vary as a scalar multiple of I . The optimum Q is hand-picked as the one giving the fast 
response with small overshoot. 

Q

 
It is interesting to note that there is a sharp peak at the beginning of the rise. This is usually 
due to the existence of dominant closed-loop zeros in the left-half of the complex s-plane. We 
deal with these dominant zeros and their effects in the next section. 
 
As for the high-altitude high-speed run (see Figure 7) the response is faster, reaching the 
steady state within 0.3 seconds. The overshoot is increased to about 10%. It is also noticed 
that the performance is consistent over a broad range of Q settings. 
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Another interesting observation is that the optimum Q value is smaller when the dynamic 
pressure is higher. The increase of the dynamic pressure causes the airframe to respond 
faster without having to increase the control effort. 
 
Further increase in Mach number together with altitude reduction (see Figure 8) results in 
very large value of dynamic pressure. Again, this causes the optimum Q to become much 
smaller. The optimum Q is chosen as I0005.0  (green) which results in the overshoot of 
19% and the settling time of 0.08 second. Raising Q above I01.0 introduces oscillations. 
 
As for the low-altitude high-speed run (see Figure 9), the dynamic pressure is extremely 
high, leading to a very small Q. Again the green curve is picked as the optimum response 
(Q = ). The settling time is less than 0.05 second, and the overshoot is about 15%. I7101 
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Q=20000
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Figure 6: High altitude and low speed case (Start of Boost). 30 km, Mach 0.8, q 521 
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Figure 7: High altitude and high speed case (End of Boost). 30 km, Mach 6, q 29308 
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Figure 8: Medium altitude and high speed case (Dive). 15km, Mach 9, q 682947 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

ay

 

 

demand

Q=5e-007

Q=1e-007
Q=5e-008

Q=1e-009

 
Figure 9: Low altitude and high speed case (Impact). 0km, Mach 10, q 7386198 

 
2.5 Effect of Poles and Zeros on the Step Response 

We select the high-altitude low-speed example in Section 2.4 to take a closer look at the 
initial positive bump in the step response. The transfer function  is numerically 

given as 
y_demandy / aa

 

4221

421719

y_demand

y

1094.2

1094.21099.1








s

s

a

a
 

 
This transfer function has 21 poles and 17 zeros. After pole-zero cancellations, the transfer 
function is truncated to have only four most dominant poles  i24.266.2 
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and , and two most dominant zeros i06.1469.135  i66.40004.0  , before proceeding to the 
analysis of the effect of dominant zeros. 
 

1.4
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Figure 10: Step responses of truncated and original transfer functions: Blue-> [4 poles], 

Green-> [4 poles, 2 zeros], Red->[21 poles, 17 zeros]. 

 
Figure 10 indicates that the truncated model with 4 dominant poles and 2 dominant zeros is 
a good approximation – the green and red curves are well aligned. It is clear that the zeros 
are the most dominant. If we remove the zeros, the bump disappears (see the blue curve in 
Figure 10). 
 
We want to examine how the movement of the zeros along the real and imaginary axes 
affects the initial bump. The simulation results are given in Figure 11 and Figure 12. 
 
In Figure 11, as the zeros move away from the origin along the real axis, the initial bump 
becomes less prominent by means of the trough on the right being elevated, and eventually 
disappears (The cyan curve corresponds to the case when the zeros become less dominant 
than the poles). As the zeros move away from the origin along the imaginary axis, the actual 
height of the bumps drops and eventually disappears (see Figure 12).  
 
Revisiting the higher speed run (Mach 6) as in Figure 7, the initial bump is significantly 
attenuated when compared with the slow speed run in Figure 6. For Figure 7, the dominant 
poles are and the dominant zeros are . These 
zeros sit much further from the origin than the zeros in slow speed run of Figure 6, resulting 
in the diminished bump. This initial bump disappears as the dynamic pressure further 
increases. 

)25.12924.127,14. ii  )7.9524.0( i3189.23( 
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Figure 11: Effect of moving the zero along the real axis. The real part of zeros are: -0.004 (blue), 

-0.4 (green), -1 (red), and -4 (cyan). 
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Figure 12: Effect of moving the zero along the imaginary axis. The imaginary part of zeros are: 

- (red), 2 4 (blue)and  (green). 8

 
2.6 Why Positive Bump when Tail Controlled? 

It is given in [Garnell and East 1977] that the IMU is mounted 0.5 m fore of the missile centre 
of gravity (CG). We define as the IMU displacement from the CG along the missile’s 

forward axis (e.g., =0.5). Considering the most sluggish response in the high-altitude low-

speed case, the y-axis linear acceleration and z-axis (yaw) angular acceleration are plotted in 

xd

xd

Figure 13. The initial transient portions (red-circle) are zoomed for a closer look. A negative 
rudder deflection as in Figure 14 (ie., anticlockwise when viewed from above) initially 
pushes the missile to the left before the clockwise rotation steers it to right. Therefore the 
sensor at the CG should experience a brief negative y-acceleration first and then a positive y-
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acceleration. This phenomenon is known as non-minimum phase response which often 
arises among the tail-controlled missiles.  
 
The positive bump in Figure 13 is the result of the accelerometer being placed fore of the CG, 
hence sensing the lever arm effect. The positive angular acceleration (right plot in Figure 13) 
translates to the positive linear acceleration (e.g., rda xy  ) that happens to be greater than 

the initial negative bump. 
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Figure 13: (y acceleration) and ya r (yaw acceleration) responses. The plots on the bottom are the 

enlarged initial responses. 
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Figure 14: Rudder fin deflection 
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As mentioned earlier, the rudder fin deflection is mostly negative in Figure 14. The fact that 
the negative fin deflection leads to the positive yaw motion confirms that the missile is tail-
controlled. Another way to prove that the missile is tail-controlled, is to shift the IMU back 
to the CG (i.e., =0) and show that the initial bump becomes negative. In xd Figure 15, 

without the lever arm effect, the initial y-acceleration bump is negative (peaked to about -
0.5 m/s²) as expected. Adding this -0.5 m/s² to lever-arm effect ( 8.0  m/s²) gives a net 
acceleration of 0.3 m/s². This value is similar to the 0.2 m/s² bump in Figure 13. Furthermore, 
it is also shown that shifting the IMU to the CG results in one of the zeros becoming positive 
as shown Figure 16. 
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Figure 15: Non-minimum phase response for y-acceleration and the associated angular acceleration, 

when the IMU is at the CG. Bottom row is the zooming of the initial bumps in the top row. 
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Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

−30 −25 −20 −15 −10 −5 0 5 10 15 20

−30

−20

−10

0

10

20

0.440.58

0.7

0.82

0.91

0.975

5

10

15

20

25

5

10

15

20

25

30

35

0.140.280.440.580.7

0.82

0.91

0.975

0.140.28

 
Figure 16: Pole and zero plot when the IMU is at the CG. Poles are shown as crosses and zeros are 

shown as circles. 

 
2.7 Gain Scheduling – Optimal Weight versus Dynamic Pressure 

Gain scheduling is an approach that uses a family of linear controllers, each of which 
provides satisfactory control at its operating point. The scheduling variables are defined as 
parameters used to determine the operating point the system is currently at. In a flight 
control system, they are usually the altitude and Mach number as given in Tables 1-2. This is 
one of the simplest and most intuitive forms of adaptive control (strictly speaking this is not 
adaptive as the system does not have self-organising features). 
 
For a given dynamic pressure, we iterate the step response simulations over various Q 
settings and hand-pick the optimum Q. The optimal Q values are then plotted against their 
dynamic pressure counterparts The log-log plot in Figure 17 exhibits a one-to-one mapping, 
suggesting that the dynamic pressure may be used as the single gain-scheduling input for 
the flight envelope of consideration.  
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Figure 17: Optimum Q versus dynamic pressure 

 
 

3. Output Feedback Control System 

3.1 Formulation 

In the earlier stages of control design, we assumed that all the states were accurately 
measureable. This assumption does not hold in practice. In the given model, 6 out of the 24 
states are actually measurable (ie., IMU outputs). Therefore, it is appropriate to include a 
state observer design as shown in Figure 18.  
 
The state observer estimates all 24 states including the six measurable ones (ie., full state 
observer) by adjusting the filter gain  so that the measurement difference ( ) remains 
small. 

fK xJz ˆ
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Figure 18: Observed-state feedback control system 
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In order to derive the state observer, we first consider the plant and measurement equations 

GuFxx   (36) 
Jxz  . (37) 

 
Suppose we construct the dynamic equations for the estimated state  by replicating (36). x̂
 

GuxFx  ˆ̂  (38) 
 
Now define the estimation error as xxe ˆx  , and derive the error propagation equation. 
Subtracting (38) from (36), we arrive at  
 

xx ˆˆ FexFFxxxe   . (39) 
 
This shows that when the matrix F is asymptotically stable, the error converges to zero 
for any input u, which means that x  eventually converges to  as . However, when 

is not stable,  is unbounded and  may grow very large. To avoid this, one must add a 
correctional term to (38) as shown below. 

xe

ˆ x t
F xe x̂

 
)ˆ(ˆˆ xJzKGuxFx  f

  (40) 
 
where is a filter gain matrix. fK 624
 
When  becomes very close to , the correctional term x̂ x )ˆ( xJzK f

ˆ
plays minimum role. 

However, when x  drifts away from , the role of this term (driving x  towards x ) becomes 
more dominant. 

ˆ x

 
To see how this can be done, the error propagation equation is given by subtracting (40) 
from (36), 
 

xfx )(ˆ eJKFxxe    (41) 
 
Now  converges to zero as long as xe )( JKF f  is asymptotically stable. We know that even 
if is unstable, we can find that makes F fK )f JK(F  stable. The system (40) can also be 
expressed as 
 

zKGuxJKFx ff ˆ)(ˆ   (42) 
 
This state observer has two inputs – the plant input u and the measurement output z  as 
shown in Figure 18. 
 
Any choice of in (42) for which fK )( JKF f is asymptotically stable will make x converge 
to . However, in general the output z and the process dynamics are contaminated by 
measurement noise and disturbance (process noise) respectively, therefore a more realistic 
model representation would be 

ˆ
x
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wGuFxx   (43) 

vJxz   (44) 
 
The process and measurement noises w and v are assumed Gaussian and satisfy  
 

0w )(E , , , and , (45) 0v )(E f)( Qww TE f)( Rvv TE

 
Including the error terms, the error dynamics in (41) can be rewritten as 
 

)(ˆ)( ffx vJxKxJKFwFxe   
   vKweJKF fxf )(  . (46) 

 
Because of w and v, the estimation errors may not converge to zero, but may become very 
small if the right is selected. This motivates the so-called Linear Quadratic Gaussian 
(LQG) estimation problem. 

fK

 
The objective is to find that drives the following error covariance to the minimum. fK

)( xxf
TE eeP  , (47) 

 
Note that is symmetric and positive semi-definite. Solving the LQG problem leads to the 
differential Riccati equation given as 

fP

 

ff
-1
fffff QJPRJPFPFPP  TT  (48) 

 
which is solved forward in time with the initial condition of . )( 0f tP

 
If the observer is stable, then we may set 0t , and obtain the steady state solution by 

solving the filtering algebraic Ricatti equation (FARE) 
 

ff
-1
ffff QJPRJPFPFP0  TT  (49) 

 
Using the analogy of this equation (FARE) with the previous CARE in the LQR design, the 
analytic method of [Naidu 2002] or matlab function care can be used again to generate . fP

 
),,,( fff RQJFP TTcare  
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And the optimal filter gain is given as fK

 
1

fff
 RJPK T . (50) 

 
3.2 Simulation 

Having found the optimal , the state observer takes the measurements and the control 
input, and estimates the states. In this section, we repeat the first two examples in Section 2.4 
to observe the effect of including the state observer on the performance. The simulation 
results are shown in 

fK

Figure 19 and Figure 20. 
 
The errors  and  are given as Gaussian noises w v ]01.0,0[   and their covariance 
matrices are set as 
 

2424
3

f 10 
 IQ  

66
4

f 10 
 IR  

 
Figure 19 and Figure 20 indicate that all the excited states are estimated well. For benign 
states (ie., appearing as noises), their estimates are simply the noise-attenuated. In all cases, 
no estimate breaks away from the true states, suggesting that JKF f  in (46) is stable. It was 
also observed that a very high ratio often leads to instability. ff / RQ

 

 
Figure 19: Plot of the 24 estimated states (blue) versus the true states(red) for the high altitude low 

speed run with Q=10000 
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Figure 20: Plot of the 24 estimated states (blue) and the true states(red) for the high altitude and high 

speed run with Q=2. 

 
 
3.3 Effect of Adding the Observer on Closed Loop System 

The step responses of the output feedback system are similar to those of the state feedback 
system. It appears that the dynamical behaviours of the closed loop system are not largely 
affected by inclusion of the state observer. 
 
Since the dynamical behaviour is solely due to the pole locations, we can ignore the input 
gain terms for the following analysis. We revisit the process equation (36) with the feedback 
input  and also the estimation error differential equation (41). xKu ˆc
 

xcc

xc

c

eGKxGKF

exGKFx

xKGFxx






)(

)(

)ˆ(
 (51) 

 

xf

x

eJKF

xFFxe

)(

ˆ




 (52) 

 
The above equations can be combined in single matrix notation as 
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. (53) 

 
The above equation describes the dynamical behaviour of the output feedback control 
system. The characteristic equation becomes 
 

0)()(
)(

)(
fc

f

cc 



JKFIGKFI

JKFI0

GKGKFI
ss

s

s
. (54) 

 
The closed-loop poles of the combined system are a union of the two independent groups of 
poles – one belonging to the regulator dynamics cGKF  and the other belonging to the 
state observer dynamics . The observer does not shift the pole locations of the 
regulator, hence making it possible to design the regulator and observer separately and 
bring them together later. This property is known as the Separation Principle [Anderson and 
Moore 1989]. If both the matrices are asymptotically stable, then so will be the closed-loop 
system. 

JKF f

 
From the steady state point of view, inclusion of the estimator makes no difference 
(because ). From the transient point of view, the behaviour of the combined system 
might be different from that of the true-state feedback system. Ideally, the poles of 

should be placed to the left of the poles of 

0e 

JKF f cGKF  so that the observer response is 
faster than the regulator response.  
 
The current setting of and results in the observer poles placed to the left of the 
regulator poles (dominant poles are shown below), and there is no apparent detrimental 
effects from the observer poles on the overall system dynamics. Further experiments 
indicated that in order to separate the observer poles further from the regulator poles, the 

 ratio needs to increase further, which speeds up the estimation convergence. As 
stated before, increasing  excessively leads to instability. 

fR

fQ

fQ

f

ff / RQ

/ R

 
Low Speed    High Speed  
Observer poles Regulator poles   Observer poles Regulator poles 
-0.00018202 -5.8343e-006   -0.0010883 -0.00032818 
-2.6 ± 1.6e-014i -1.5082 ± 1.5075i   -43.708 -18.03 
    -41.544 ± 57.937i -23.887 ± 31.142i 
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4. Conclusions 

We present an optimal flight control design where the objective is to find a feedback gain 
that achieves a good balance of fast response and small control effort. We adopt the generic 
24-state airframe model derived in [Farhan 2007], and the aerodynamic coefficients are taken 
from the open literature [Garnell and East 1977] where the missile is symmetric and has a 
cruciform shape. 
 
Initially, effects of varying the weighting matrix Q on the step responses were investigated. 
It was concluded that increasing Q improves the response speed but at the expense of 
increased control burden. The closed loop responses were examined at numerous operating 
points along the flight envelope, and the corresponding optimum  values are noted. When 
the dynamic pressure becomes high, reducing the control effort becomes the primary 
objective as the fast response is readily achievable. It looks feasible to use the dynamic 
pressure as a sole gain-scheduling input for the flight envelope of consideration. 

Q

 
The dominant zeros affect the initial transient of the step response. Tail-controlled missiles 
are expected to exhibit non-minimum phase responses. However, having the IMU placed 
sufficiently ahead of the CG, allows the positive zero(s) of the transfer function 

to become negative, reversing the sign of the initial bump. )/( y_desiredy_out aa

 
The design and simulation of an LQG controller are also presented. When the process noise 
covariance is made larger than the measurement noise covariance , the estimator 
interprets a large deviation of z from as an indication that the estimate x is poor hence 
needs to be aggressively corrected. In practice, this leads to large  and fast poles 
for  leading to fast convergence. Making  excessively large, however, makes the 
system unstable. Overall, the inclusion of the state observer does not seem to deteriorate the 
tracking performance. 

fQ fR

ˆ

fK
ˆ z

JKF f fQ

 
The LQR based controller is relatively easy to implement on multivariable systems, and the 
closed loop system is asymptotically stable. The tuning process is a simple adjustment of 

RQ /  ratio until the desired balance of fast response and small control effort is achieved.  
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